

TUTORAL

kiriana.welsh-phillips@vuw.ac.nz marketingatvic.rocketspark.co.nz

LET'S CHECK

AVG_CM

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	2.33	1	.9	.9	.9
	3.00	1	.9	.9	1.8
	3.33	2	1.8	1.8	3.5
	3.67	3	2.7	2.7	6.2
	4.00	2	1.8	1.8	8.0
	4.33	4	3.5	3.5	11.5
	4.67	9	8.0	8.0	19.5
	5.00	9	8.0	8.0	27.4
	5.33	9	8.0	8.0	35.4
	5.67	20	17.7	17.7	53.1
	6.00	19	16.8	16.8	69.9
	6.33	17	15.0	15.0	85.0
	6.67	10	8.8	8.8	93.8
	7.00	7	6.2	6.2	100.0
	Total	113	100.0	100.0	

K

<

L	E	T'S	C		CK
			AVG_EM	l	
		Frequency	Percent	Valid Percent	Cumulative
Valid	2.00	1	1 ercent		q
valiu	2.00	1	.9	.9	.9
	2.20	3	.9		1.8
	2.40	1	2.7	2.7	
	2.00	2	1.8	.9	7 1
	3.00	2	2.7	2.7	9.7
	3.20	3	2.7	2.1	12.4
	3.40	5	4.4	4.4	16.8
	3.60	3	27	27	19.5
	3.80	3	2.7	2.7	22.1
	4.00	7	6.2	6.2	28.3
	4.20	2	1.8	1.8	30.1
	4.40	8	7.1	7.1	37.2
	4.60	9	8.0	8.0	45.1
	4.80	6	5.3	5.3	50.4
	5.00	12	10.6	10.6	61.1
	5.20	5	4.4	4.4	65.5
	5.40	9	8.0	8.0	73.5
	5.60	11	9.7	9.7	83.2
	5.80	8	7.1	7.1	90.3
	6.00	1	.9	.9	91.2
	6.20	5	4.4	4.4	95.6
	6.40	2	1.8	1.8	97.3
	6.80	2	1.8	1.8	99.1
	7.00	1	.9	.9	100.0
	Total	113	100.0	100.0	

LET'S CHECK

AVG HRM

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	1.00	1	.9	.9	.9
	1.83	1	.9	.9	1.8
	2.00	1	.9	.9	2.7
	2.33	1	.9	.9	3.5
	2.50	1	.9	.9	4.4
	2.67	1	.9	.9	5.3
	3.00	1	.9	.9	6.2
	3.17	3	2.7	2.7	8.8
	3.33	2	1.8	1.8	10.6
	3.50	2	1.8	1.8	12.4
	3.67	3	2.7	2.7	15.0
	3.83	1	.9	.9	15.9
	4.00	3	2.7	2.7	18.6
	4.17	3	2.7	2.7	21.2
	4.33	7	6.2	6.2	27.4
	4.50	3	2.7	2.7	30.1
	4.67	4	3.5	3.5	33.6
	4.83	4	3.5	3.5	37.2
	5.00	5	4.4	4.4	41.6
	5.17	7	6.2	6.2	47.8
	5.33	3	2.7	2.7	50.4
	5.50	4	3.5	3.5	54.0
	5.67	6	5.3	5.3	59.3
	5.83	9	8.0	8.0	67.3
	6.00	11	9.7	9.7	77.0
	6.17	7	6.2	6.2	83.2
	6.33	3	2.7	2.7	85.8
	6.50	2	1.8	1.8	87.6
	6.67	4	3.5	3.5	91.2
	6.83	3	2.7	2.7	93.8
	7.00	7	6.2	6.2	100.0
	Total	113	100.0	100.0	

PROBLEM

- Identify categorical vs. continuous variables
- Hypothesis
- T-Tests
- Interpret SPSS output for a t-test
- Dichotomous categorical vs. Polytomous Categorical Variables
- ANOVA Tests
- Interpret ANOVA output.

TYPES OF DATA

Ethnicity Gender Hair color First. Letter (Blonde. (Hispanic, grades: A, (Women. second Men) Brown) Asian) and third B, C, **NOMINAL DATA ORDINAL DATA QUALITATIVE DATA Types Of Data OUANTITATIVE DATA** **DISCRETE DATA CONTINUOUS DATA** The The square The The number The footage of a number of number of of home runs height of two-bedroom students workers in in a baseball children house in a class a company game

Categories

Whole Numbers

Ordered/ Ranked

Decimals

ONE SAMPLE T-TEST

T-tests are used to test hypotheses related to differences. Assume that your first hypothesis is: On average, our customers' purchase intention is relatively high.

For the tutorial we will use question 6

Q6 If you could make your computer purchase decision again, how likely would you be to choose DELL?

Definitely would □-1

Probably would □-2

 \triangleleft Might or might not $\square -3$

Probably would not -4

or Definitely would not □-5

Does this data look right? Recode

Tip: download the recoded data set

lee

ONE SAMPLE T-TEST

To test the hypothesis "On average, our customers' purchase intention is relatively high"

SPSS Guide: Analyze > Compare Means > One Sample T-Test Select Variable (Q6 Recoded) Set Test Value to 3 Interpret Results

ONE SAMPLE T-TEST

P-Value = Sig (2-Tailed)

Remember from STAT193/QUAN102

P < 0.05 = hypothesis is supported</p>
P > 0.05 = hypothesis is rejected

If you could make your computer purchase decision again, how likely would you be to choose Dell? [Recoded]

T-Test

If you could make your computer purchase decision again, how likely would you be to choose Dell? [Recoded]

What does the mean suggest?

One-Sample Statistics

Ν	Mean	Std. Deviation	Std. Error Mean
372	4.6022	.58073	.03011

INDEPENDENT SAMPLES T-TEST

To test differences between two groups in one category

H1: "On average, males will have greater purchase intention compared to females"

SPSS Guide: Analyze > Compare Means > Independent Samples T-Test Select Variable (Q6 Recoded) Select Grouping Variable (Q14 as it asks for male/female) **Define Groups 1 and 2 Interpret Results**

INDEPENDENT SAMPLES T-TEST

Group Statistics

	Gender	N	Mean	Std. Deviation	Std. Error Mean
If you could make your computer purchase decision again, how	Male	183	4.5956	.59335	.04386
likely would you be to choose Dell? [Recoded]	Female	189	4.6085	.56974	.04144

		1	ndependents	samples I	est					
		Levene's Test f Varia	or Equality of nces			1	t-test for Equality	of Means		
							Mean	Std. Error	95% Confiden the Diff	ice Interval of erence
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper
If you could make your computer purchase decision again, how	Equal variances assumed	.070	.791	213	370	.832	01284	.06030	13142	.10574
likely would you be to choose Dell? [Recoded]	Equal variances not assumed			213	368.044	.832	01284	.06034	13150	.10582

P < 0.05 = hypothesis is supported P > 0.05 = hypothesis is **rejected**

The hypothesis is?

PAIRED SAMPLES T-TEST

To compare the means of two variables for a single group (uses two different questions to do a comparison)

H1: "Consumers purchase intention will not be significantly different from their purchase intention if the price was 5% higher"

Continue using Q6 Recoded, will also need Q9A

Q9A If the price of the DELL computer system you purchased had been 5% higher, and all other personal computer prices had been the same, how likely would you have been to have purchased your DELL computer system?

- Definitely would have purchased □-1
- Probably would have purchased □ -2
- Might or might not have purchased □-3
- Probably would not have purchased □-4
- or Definitely would not have purchased □-5

Does this data look right? Recode? Tip: download the recoded data set

PAIRED SAMPLES T-TEST

SPSS Guide:

Analyze > Compare Means > Paired Samples T-Test Select Variable (Q6 Recoded) as Variable 1 Select Variable (Q9A Recoded) as Variable 2 **Click OK**

Interpret Results

PAIRED SAMPLES T-TEST

Paired Samples Test

				Paired Difference	es				
		Maan	Std.	Std. Error	95% Confiden the Diff	erence		41	Sin (O toiled)
Pair 1	If you could make your computer purchase decision again, how likely would you be to choose Dell? [Recoded] - (Recoded) If the price of the Dell computer system you purchased had been 5% higher, and all other personal computer prices had been the same, how likely would you have been to have purchased your Dell computer system?	1.68011	1.03696	.05376	1.57439	1.78583	31.250	371	.000

P < 0.05 = hypothesis is supported

P > 0.05 = hypothesis is rejected

Hypothesis is?

PAIRED SAMPLES T-TEST The hypothesis is NOT supported this time. Why?

- P < 0.05 = also means that there IS a significant difference P > 0.05 = also means that there IS NOT a significant difference
- H1 = "Consumers purchase intention will not be significantly different from their purchase intention if the price was 5% higher"

Be careful how you phrase your hypothesis

WHEN TO USE THE DIFFERENT T-TESTS

One sample t-test = tests whether the sample mean is significantly different from a specified value

Independent samples t-test = test a difference in one continuous variable for two separate groups

Paired samples t-test = test difference in two continuous variables for one group. The means of two variables are compared that apply to everyone in the sample

DICHOTOMOUS VS. **POLYTOMOUS GROUPING** VARIABLES

Dichotomous = Two values Polytomous = More than two values

Remember sometimes you can recode a variable from polytomous to dichotomous.

Sometimes you can't so you need to perform an ANOVA Test

ANOVA TESTS Use ANOVA when independent variable is categorical (3 or more

levels eg Q11) and the dependent variable is continuous.

ANOVA is used to measure the effect a categorical variable has on a continuous variable

SPSS Guide:

Analyze > Compare Means > One-Way ANOVA Select Variable (Q6 Recoded) place in Dependent List **Select Variable (Q11) place in Factor Click Options > Check Descriptive and Mean Plots > OK Interpret Results**

ANOVA TESTS

Oneway

Descriptives

If you could make your com	nputer purcl	hase decisio	on again, how lik	ely would you	u be to choose D	ell? [Recoded]		
			Std.		95% Confiden Me	ce Interval for an		
	N	Mean	Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
Some High School or less	9	4.7778	.44096	.14699	4.4388	5.1167	4.00	5.00
High School Graduate	34	4.6471	.54397	.09329	4.4573	4.8369	3.00	5.00
Some College/Technical School	113	4.5487	.64075	.06028	4.4292	4.6681	2.00	5.00
College Graduate or higher	216	4.6157	.55868	.03801	4.5408	4.6907	2.00	5.00
Total	372	4.6022	.58073	.03011	4.5429	4.6614	2.00	5.00

ANOVA

If you could make your computer purchase decision again, how likely would you be to choose Dell? [Recod

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	.709	3	.236	.699	.553
Within Groups	124.409	368	.338		
Total	125.118	371			\sim

What can you conclude from the P-Value? Purchase intention is **NOT** significantly different across education levels

